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Measurement Errors 
 
 
 

Systematic and Random Errors 

 Errors are effects that cause a 
measured value to differ from its 
true value.  

 Systematic error causes an offset 
between the mean value of the 
data set and its true value. 

 Random error causes a random 
variation in measured values 
found during repeated 
measurements of a variable.  

 Both random and systematic 
errors affect a system’s accuracy. 

Thermometer 
reading = 25 °C 

Actual 
Temperature  
could be 
between 23 °C 
and 27 °C  
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Systematic and Random Errors 

Low random error 
High systematic error 
 
High precision 
Low accuracy 

Low random error  
Low systematic errors 
  
High Precision 
High accuracy 

High random error,  
High systematic  error 
 
Low precision 
Low accuracy 

Systematic and Random Errors 
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Random Errors 
 Random errors in measurements are caused 

by unpredictable variations in the 
measurement system.  

 They are usually observed as small 
perturbations of the measurement to either 
side of the correct value, i.e. positive errors 
and negative errors occur in approximately 
equal numbers for a series of measurements 
made of the same constant quantity. 

 Therefore, random errors can largely be 
eliminated by calculating the average of a 
number of repeated measurements, 
provided that the measured quantity 
remains constant during the process of 
taking the repeated measurements. 

Systematic Errors 

 

Sources of Systematic Error 
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Sources of Systematic Error: 
1) Zero Drift 

 Zero drift (zero offset) (or bias) 
causes a constant error over 
the full range of measurement. 
Zero drift is normally removable 
by calibration. 

A scale giving a reading when no 
mass is placed  has a zero drift  

Nominal 
characteristic 

Characteristic 
with zero drift 

Sources of Systematic Error: 
 2) Scale Error 

 Scale error produces an error that is a 

percentage of the measured quantity 

Expansion or contraction of the 
ruler due to temperature 

Hardening of softening of the 
spring used in the scale 

Variable Measured 

Error Scale :

:x

e

kxe 

Nominal 
characteristic 

Characteristic 
with scale error 

http://www.google.jo/imgres?imgurl=http://www.beaconlearningcenter.com/weblessons/measuringtools/groc_scale.jpg&imgrefurl=http://www.beaconlearningcenter.com/weblessons/measuringtools/default.htm&usg=__t6f5VssfotwsLgjdQgH8FHPFb0w=&h=364&w=264&sz=18&hl=ar&start=7&zoom=1&tbnid=RLiydr43jbvEQM:&tbnh=121&tbnw=88&ei=IneJTpH4Caje4QSFmeC9Dw&prev=/search?q=measuring+weight&hl=ar&sa=N&gbv=2&tbm=isch&itbs=1
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Combined Zero Drift and Scale 
Error 

Nominal 
characteristic 

Characteristic 
with zero drift 

Nominal 
characteristic 

Characteristic 
with zero drift 
and scale error 

Nominal 
characteristic 

Characteristic 
with scale 

error 

Sources of Systematic Error: 
3) System disturbance due to measurement 

 Disturbance of the measured system by the 
act of measurement is a common source of 
systematic error. 

 A  mercury-in-glass thermometer, initially at 
room temperature, and used to measure the 
temperature of a hot water beaker, would 
introduce a disturbance (heat capacity of the 
thermometer) into the hot water and lower 
the temperature of the water.  

 In nearly all measurement situations, the 
process of measurement disturbs the system 
and alters the values of the physical quantities 
being measured. 
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Example 1:   System Disturbance in temperature 
  Measurement   

 A liquid in glass is used to measure 
the temperature of a water in a hot 
water beaker.  

 Determine the parameters 
affecting the disturbance error. 
Estimate the disturbance error in 
term of these parameters. 

 Hint:  Use an energy balance on 
the overall thermometer-beaker 
system 

Example 1: Solution   

Ta :Actual temperature of the water in the beaker 

Tm :Measured temperature of the water in the beaker 

Tr : Initial temperature of the thermometer (room 
temperature. 

Ct : Heat capacity of the thermometer 

CW:Heat capacity of the water in the beaker = mwcw 

   

   rm
w

t
ma

rmtmaw

TT
C

C
TT

TTCTTC





Heat loss from the water = Heat gain by the thermometer 
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Sources of Systematic Error: 
 

   rm
w

t
ma TT

C

C
TT 

Scale 
factor 

Scale 
Error 

Measured 
Quantity 

 If we consider the thermometer to be 
measuring the amount by which the 
temperature in the beaker deviates from the 
current temperature of the thermometer.  

  then the disturbance error can be 
considered as a scale error 

 In the circuit shown, the voltage across resistor R5 is to be 
measured by a voltmeter with resistance Rm. Estimate the 
disturbance error in the measured voltage in term of Rm. 

Example 2:   System Disturbance in electric circuit
  measurements  
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 Here, Rm acts as a shunt resistance across R5, decreasing the 
resistance between points AB and so disturbing the circuit.  

  Therefore, the voltage Em measured by the meter is not the value 
of the voltage Eo that existed prior to measurement.  

 The extent of the disturbance can be assessed by calculating the 
open circuit voltage Eo and comparing it with Em. 

Example 2:   Solution 

Example 2:   Solution 

 

54

54

54

or

111

RRR

RRR
R

RRRR

CD

CD
AB

CDAB











 

321

321

321

or

111

RRR

RRR
R

RRRR

CD

CD










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 It is thus obvious that as Rm gets larger, the ratio Em/E0 gets 
closer to unity, showing that the design strategy should be 
to make Rm as high as possible to minimize disturbance of 
the measured system. 
 

 Disturbance errors are usually present in passive 
instruments where energy needs to be withdrawn from the 
system in the measurement process.    

 It is often the reason for the use of alternative active 
instruments such as digital voltmeters, where the inclusion 
of auxiliary power greatly improves performance. 

 

Example 2:   Solution 

mAB

om
mm

RR

ER
IRE




 An environmental input is defined as 
an apparently real input to a 
measurement system that is actually 
caused by a change in the 
environmental conditions surrounding 
the measurement system. 
 

 The magnitude of environment-
induced variation is quantified by the 
two constants known as sensitivity drift 
and zero drift, both of which are 
generally included in the published 
specifications for an instrument. 

4) Errors due to environmental inputs 

Nominal 
characteristic 

Characteristic 
with zero 
drift and 

scale error 
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 Variations of environmental conditions 
away from the calibration conditions are 
sometimes described as modifying inputs 
to the measurement system. 
 

 When such modifying inputs are present, it 
is often difficult to determine how much of 
the output change in a measurement 
system is due to a change in the measured 
variable and how much is due to a change 
in environmental conditions. 

Errors due to environmental inputs 

Nominal 
characteristi

c 

Characteristi
c with zero 
drift and 

scale error 

 In any general measurement situation, it is 
very difficult to avoid environmental inputs, 
because it is either impractical or 
impossible to control the environmental 
conditions surrounding the measurement 
system.  
 

 System designers are therefore charged 
with the task of either reducing the 
susceptibility of measuring instruments to 
environmental inputs or, alternatively, 
quantifying the effect of environmental 
inputs and correcting for them in the 
instrument output reading.  

Errors due to environmental inputs 

Nominal 
characteristic 

Characteristic 
with zero drift 

and scale 
error 
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 Systematic errors can 
frequently develop over a 
period of time because of 
wear in instrument 
components.  
 

 Recalibration often 
provides a full solution to 
this problem. 

5) Wear in instrument components 

Hardening of softening of 
the spring used in the scale 

 In connecting together the components of a measurement 
system, a common source of error is the failure to take 
proper account of the resistance of connecting leads (or 
pipes in the case of pneumatically or hydraulically actuated 
measurement systems).  

 For instance, in typical applications of a resistance 
thermometer, it is common to find that the thermometer is 
separated from other parts of the measurement system by 
perhaps 100 metres. 
 

 The resistance of such a length of 20 gauge copper wire is 
7Ω, and there is a further complication that such wire has a 
temperature coefficient of 1mΩ /°C.   

 Therefore, careful consideration needs to be given to the 
choice of connecting leads. 

6) Connecting leads 

http://www.google.jo/imgres?imgurl=http://www.beaconlearningcenter.com/weblessons/measuringtools/groc_scale.jpg&imgrefurl=http://www.beaconlearningcenter.com/weblessons/measuringtools/default.htm&usg=__t6f5VssfotwsLgjdQgH8FHPFb0w=&h=364&w=264&sz=18&hl=ar&start=7&zoom=1&tbnid=RLiydr43jbvEQM:&tbnh=121&tbnw=88&ei=IneJTpH4Caje4QSFmeC9Dw&prev=/search?q=measuring+weight&hl=ar&sa=N&gbv=2&tbm=isch&itbs=1
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 The prerequisite for the reduction of systematic errors is a 
complete analysis of the measurement system that 
identifies all sources of error.  
 

 Simple faults within a system, such as bent meter needles 
and poor cabling practices, can usually be readily and 
cheaply rectified once they have been identified. 
 

 However, other error sources require more detailed analysis 
and treatment.  

 Various approaches to error reduction are considered in the 
next slides. 

Reduction of systematic errors 

 Careful instrument design is the most useful method in dealing 
with environmental inputs.   

 This aims at reducing the sensitivity of an instrument to 
environmental inputs to as low a level as possible.  
 

 For instance, in the design of strain gauges, the element should 
be constructed from a material whose resistance has a very low 
temperature coefficient (i.e. the variation of the resistance with 
temperature is very small).  

 However, errors due to the way in which an instrument is 
designed are not always easy to correct, and a choice often has 
to be made between the high cost of redesign and the 
alternative of accepting the reduced measurement accuracy if 
redesign is not undertaken. 

Reduction of systematic errors 
1) Careful instrument design 



BZU-ECE 

 ENEE4304 Instrumentation & Measurement 

 

3/1/2016 

2nd  Semester    2015-2016 

Instructor: Nasser Ismail 

 13 

 The method of opposing inputs compensates 
for the effect of an environmental input in a 
measurement system by introducing an equal 
and opposite environmental input that 
cancels it out.  
 

 One example of how this technique is  
applied is in the type of millivolt meter shown.   
 It consists of a coil suspended in a fixed 

magnetic field produced by a permanent 
magnet.  

 When an unknown voltage is applied to the 
coil, the magnetic field due to the current 
interacts with the fixed field and causes the 
coil (and a pointer attached to the coil) to 
turn.  

Reduction of systematic errors 
2) Method of opposing inputs 

 If the coil resistance Rcoil is sensitive to 
temperature, then any temperature change 
in the environment will alter the value of 
the coil current for a given applied voltage 
and so alter the pointer output reading.  
 

 Compensation for this is made by 
introducing a compensating resistance  

     Rcomp into the circuit, where Rcomp has a 
temperature coefficient that is equal in 
magnitude but opposite in sign to that of the 
coil.  
 Thus, the total resistance remains 

approximately the same in response to a 
temperature change. 

Method of opposing inputs 
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 The benefit of adding high-gain 
feedback to many measurement 
systems is illustrated by considering 
the case block diagram of the 
millivoltmeter shown.  

 In this system, the unknown voltage Ei 

is applied to a coil of torque constant 
Kc, and the induced torque turns a 
pointer against the restraining action of 
a spring with spring constant Ks.  
 

 The effect of environmental 
disturbance on the motor and spring 
constants is represented by variables 
Dc and Ds. 

Reduction of systematic errors 
3)High-gain feedback 

 In the absence of environmental inputs, 
the displacement of the pointer X0 is 
given by: X0 = KcKsEi. 
 

 However, in the presence of 
environmental inputs, both Kc and Ks 
change, and the relationship between X0 

and Ei can be affected greatly. Therefore, 
it becomes difficult or impossible to 
calculate Ei from the measured value of 
X0 . 
 

High-gain feedback 
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 Consider now what happens if the system is 
converted into a high-gain, closed-loop one, 
as shown in the, by adding an amplifier of 
gain constant Ka and a feedback device with 
gain constant Kf.  
 

 Assume also that the effect of 
environmental inputs on the values of  Ka 
and Kf are represented by Da and Df. 

  The feedback device feeds back a voltage 
E0 proportional to the pointer displacement 
X0.  

 This is compared with the unknown voltage 
Ei by a comparator and the error is 
amplified. 
 

High-gain feedback 

 Writing down the equations of the system, we have: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

If Ka is made very large (it is a high-gain amplifier), 

High-gain feedback 

 
scaoio
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KKKEEX

XKE





i
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
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 This important result shows that the relationship between the 
output, X0 , and the input, Ei , has been reduced to one that 
involves only Kf.  

 The sensitivity of the gain constants Ka, Kc and Ks to the 
environmental inputs Da, Dm and Ds has thereby been rendered 
irrelevant, and we only have to be concerned with one 
environmental input Df. 
 

High-gain feedback 

i
f

o E
K

X
1



 It is usually easy to design a feedback device that is insensitive to 
environmental inputs: this is much easier than trying to make a coil 
or spring insensitive.  

 Thus, high gain feedback techniques are often a very effective way 
of reducing  measurement system’s sensitivity to environmental 
inputs.  
 

 One potential problem, however, is that there is a possibility that 
high-gain feedback will cause instability in the system.  

 Therefore, any application of this method must include careful 
stability analysis of the system. 

High-gain feedback 
i

f
o E

K
X

1

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 Intelligent instruments contain extra sensors that 
measure the value of environmental inputs and 
automatically compensate the value of the output 
reading.  
 

 They have the ability to deal very effectively with 
systematic errors in measurement systems, and errors 
can be attenuated to very low levels in many cases 

Reduction of systematic errors 
4)Intelligent Instruments 

 Instrument calibration is a very important 
consideration in measurement systems as all 
instruments suffer drift in their characteristics, and the 
rate at which this happens depends on many factors, 
including environmental conditions in which 
instruments are used and the frequency of their use. 
 

 Thus, errors due to instruments being out of calibration 
can usually be rectified by increasing the frequency of 
recalibration. 

Reduction of systematic errors 
5)Calibration 
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 Once all practical steps have been taken to eliminate or reduce 
the magnitude of systematic errors, the final action required is to 
estimate the maximum remaining error that may exist in a 
measurement due to systematic errors. 
 

 The usual course of action is to assume mid-point environmental 
conditions and specify the maximum measurement error as ±x% 
of the output reading to allow for the maximum expected 
deviation in environmental conditions away from this mid-point. 
 

 Data sheets supplied by instrument manufacturers usually 
quantify systematic errors in this way, and such figures take 
account of all systematic errors that may be present in output 
readings from the instrument. 

Quantification of systematic errors 

Random Errors 
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 The average value of a 

set of measurements of 
a constant quantity can 
be expressed as either 
the mean value or the 
median value  

 The degree of 
confidence in the 
calculated mean/median 
values can be quantified 
by calculating the 
standard deviation or 
variance of the data. 

Statistical Analysis of Measurements 
Subject to Random Errors 

 As the number of measurements increases, the difference 
between the mean value and median values becomes very 
small.  

 For any set of n  measurements, x1, x2 , … , xn 

 of a constant quantity, the mean given by: 
 
 
 
 
 When the measurement errors are distributed equally about the 

zero error value for a set of measurements, the most likely true 
value is the mean value. 

 

Mean and Median Values 




 i
n

mean x
nn

xxx
x

121 
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 The median is an approximation to the mean and it is the middle 
value when the measurements in the data set are written in 
ascending order of magnitude.  

 For a set of n  measurements, x1, x2 , … , xn  of a constant quantity, 
written down in ascending order of magnitude, the median value 
is given by: 
 
 

 
 

 
 Thus, for a set of 9 measurements x1, x2 , … , x9  arranged in order 

of magnitude, the median value is x5. For an even number of 
measurements, the median value is midway between the two 
centre values, i.e. for 10 measurements x1, x2 , … , x10 , the 
median value is given by: (x5+x6)/2 

 

Mean and Median Values 

 

 
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21

 The length of a steel bar is measured by two sets of 
observers and the following two sets measurements were 
recorded (units mm).  Find the mean and median for each 
data set. 
 

  Measurement set A, 11 observers 
  398 420 394 416 404 408 400 420 396 413 430 
 
  Measurement set B, 14 observers 
  409 406 402 407 405 404 407 404 407 407 408 405 

412 
 
    
 
 

Example 3 
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 Measurement set A, 11 observers 
  398 420 394 416 404 408 400 420 396 413 430 
 Write in ascending order 
  394 396 398 400 404 408 413 416 420 420 430 
 Mean = 409 
 Median = 408 
  Measurement set B, 14 observers 
  409 406 402 407 405 404 407 404 407 407 408 405 412 403 
 Write in ascending order 
  402 403 404 404 405 405 406 407 407 407 407 408 409 412 
 Mean = 406.1429 
 Median = 406.5 
 
 Note that as the number of observer increases, the median 

normally gets closer to the mean. 

Example 3 Solution 

 Which of the two measurement sets A and B, and the 
corresponding mean and median values, should we have most 
confidence in? 
 

 Measurement set A, 11 observers written in ascending order 
  394 396 398 400 404 408 413 416 420 420 430 
 
 Measurement set B, 14 observers written in ascending order 
  402 403 404 404 405 405 406 407 407 407 407 408 409 412 
 
 Intuitively, we can regard measurement set B as being more 

reliable since the measurements are much closer together. In set 
A, the spread between the smallest (394) and largest (430) value 
is 36, whilst in set B, the spread is only 10.  

 Thus, the smaller the spread of the measurements, the more 
confidence we have in the mean or median value calculated. 

Confidence in Mean and Median Values 
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 Instead of expressing the spread of measurements simply as the 
difference between the largest and smallest value, a much better 
way of is to calculate the variance or standard deviation of the 
measurements.  We start by calculating the deviation (error) di of 
each measurement xi from the mean value xmean 

 

 

 
 The variance V is then given by: 
 
 
 
 and the standard deviation  

 
 

  

Standard Deviation and Variance 
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Calculate the variance V and the standard 
deviation σ for the data sets A and B of example 3.  
 

 Measurement set A, 11 observers 
 398 420 394 416 404 408 400 420 396 413 430 
 
  Measurement set B, 14 observers 
 402 403 404 404 405 405 406 407 407 407 407 

408 409 412 

Example 4 
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 As V and σ decrease for a 
measurement set, we are able to 
express greater confidence that the 
calculated mean or median value is 
close to the true value,  

 i.e. that the averaging process has 
reduced the random error value 
close to zero. 
 

Example 4.   Solution 

Xi Xi-Xmean 
398 -11 
420 11 
394 -15 
416 7 
404 -5 
408 -1 
400 -9 
420 11 
396 -13 
413 4 
430 21 

variance 137 
stdev 11.7047 

Data Set A 

 V and σ normally get smaller as the 
number of measurements increases, 
confirming that confidence in the 
mean value increases as the number 
of measurements increases. 

Example 4.   Solution 

Xi Xi-Xmean 

402 -4.14286 

403 -3.14286 

404 -2.14286 

404 -2.14286 

405 -1.14286 

405 -1.14286 

406 -0.14286 

407 0.857143 

407 0.857143 

407 0.857143 

407 0.857143 

408 1.857143 

409 2.857143 

412 5.857143 

variance 6.747253 

stdev 2.597547 

Data Set B 
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 Graphical techniques are a very useful way 
of analyzing the way in which random 
measurement errors are distributed. The 
simplest way of doing this is to draw a 
histogram, in which bands of equal width 
across the range of measurement values are 
defined and the number of measurements 
within each band is counted. 
 

 The figure shows a histogram for set B of the 
length measurement data given in example 
3, in which the bands chosen are 3mm wide. 

Graphical data analysis techniques – 
frequency distributions 

0
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403.5 - 
406.5 

406.5 - 
409.5 

409.5 - 
412.5 

402 403 404 404 405 405 406 
407 407 407 407 408 409 
412 

 For instance, there are 6 measurements in 
the range between 406.5 and 409.5 and so 
the height of the histogram for this range is 
6 units.  

 Also, there are 5 measurements in the 
range from 403.5 to 406.5 and so the height 
of the histogram over this range is 5 units.  

 The rest of the histogram is completed in a 
similar fashion. 

 The scaling of the bands was deliberately  
chosen so that no measurements fell on the 
boundary between different bands and 
caused ambiguity about which band to put 
them in.  

Graphical data analysis techniques – 
frequency distributions 
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 It is often useful to draw a histogram of the 
deviations of the measurements from the 
mean value rather than to draw a histogram of 
the measurements themselves.   

 The starting point for this is to calculate the 
deviation of each measurement away from the 
calculated mean value.  

 Then a histogram of deviations can be drawn 
by defining deviation bands of equal width and 
counting the number of deviation values in 
each band. 

 This histogram has exactly the same shape as 
the histogram of the raw measurements except 
that the scaling of the horizontal axis has to be 
redefined in terms of the deviation values 

Graphical data analysis techniques – 
frequency distributions 
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 As the number of 
measurements increases, 
smaller bands can be defined for 
the histogram, which retains its 
basic shape but then consists of 
a larger number of smaller steps 
on each side of the peak.  
 

 For example, the histogram 
shown below is for a sample of a 
total of 23 length measurements 
of the bar in example 3.  The 
bands chosen are 2mm wide 

Graphical data analysis techniques – 
frequency distributions 
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 As the number of 
measurements approaches 
infinity, the histogram 
becomes a smooth curve 
known as a frequency 
distribution curve.  
 

 The ordinate of this curve is 
the frequency of occurrence 
of each deviation value, F(D), 
and the abscissa is the 
magnitude of deviation, D. 

Graphical data analysis techniques – frequency 
distributions 

 The symmetry of the figure about the zero deviation value 
is very useful for showing graphically that the measurement 
data only has random errors and are free from systematic 
error.  
 

 If the height of the frequency distribution curve is 
normalized such that the area under it is unity, then the 
curve in this form is known as a probability curve, and the 
height F(D) at any particular deviation magnitude D is 
known as the probability density function (p.d.f.). 

Graphical data analysis 
techniques – frequency 
distributions 
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 The condition that the area under the 
curve is unity can be expressed 
mathematically as: 
 
 
 

 The probability that the error in any one 
particular measurement lies between 
two levels D1 and D2 can be calculated by 
measuring the area under the curve 
contained between two vertical lines 
drawn through D1 and D2.  This can be 
expressed mathematically as: 

Graphical data analysis 
techniques – frequency 
distributions 






1)( dDDF
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D
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 Of particular importance for assessing 
the maximum error likely in any one 
measurement is the cumulative 
distribution function (c.d.f.).  

 This is defined as the probability of 
observing a value less than or equal to 
D0, and is expressed mathematically 
as: 

 
 

 
 Thus, the c.d.f. is the area under the 

curve to the left of a vertical line 
drawn through D0, as shown by the 
left-hand hatched area 

Graphical data analysis techniques – 
frequency distributions 
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 The deviation magnitude Dp 
corresponding with the peak of the 
frequency distribution curve is the 
value of deviation that has the 
greatest probability. 
 

 If the errors are entirely random in 
nature, then the value of Dp will 
equal zero. Any non-zero value of Dp 
indicates systematic errors in the 
data, in the form of a bias that is 
often removable by recalibration. 

Graphical data analysis 
techniques – frequency 
distributions 

 Measurement sets that only contain random errors 
usually conform to a distribution with a particular 
shape that is called Gaussian.   

 The shape of a Gaussian curve is such that the 
frequency of small deviations from the mean value 
is much greater than the frequency of large 
deviations. 
 

 This coincides with the usual expectation in 
measurements subject to random errors that the 
number of measurements with a small error is much 
larger than the number of measurements with a 
large error.  

 Alternative names for the Gaussian distribution are 
the Normal distribution or Bell-shaped distribution. 

Gaussian Distribution 
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 A Gaussian curve is formally defined as a normalized 
frequency distribution that is symmetrical about the line of 
zero error and in which the frequency and magnitude of 
quantities are related by the expression: 
 
 
 

 
 where m is the mean value of the data set x and σ is the 

standard deviation of the set.  
 This equation is particularly useful for analyzing a Gaussian 

set of measurements and predicting how many 
measurements lie within some particular defined range.  

Gaussian Distribution 

    22
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mxexF 

 If the measurement deviations D are calculated for all 
measurements such that D = x - m, then the curve of 
deviation frequency F(D) plotted against deviation 
magnitude D is: 
 
 
 

 
  The shape of a Gaussian curve is strongly 

influenced by the value of σ, with the width  
     of the curve decreasing as σ becomes smaller. 
  A smaller σ corresponds with the typical deviations of 

the measurements from the mean value becoming 
smaller. 

Gaussian Distribution 
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 If the standard deviation is used as a unit of error, the Gaussian 
curve can be used to determine the probability that the 
deviation in any particular measurement in a Gaussian data set is 
greater than a certain value. By substituting the expression for 
F(D) from the previous equation into the probability equation  
 
 
 

  
 The probability that the error lies in a band between error levels 

D1 and D2 can be expressed as: 

Gaussian Distribution 
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 Solution of this expression is simplified by the 
substitution: 
 
 

  
 The effect of this is to change the error 

distribution curve into a new Gaussian 
distribution that has a standard deviation of 
one (σ  = 1), and a mean of zero.  

 This new form is known as a standard Gaussian 
curve, and the dependent variable is now z 
instead of D.  

 The equation can now be re-expressed as: 

Gaussian Distribution 
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 The previous equation can not be integrated 
analytically and numerical integration provides the 
only method of solution. 
 

 In practice, the numerical integration can be  
avoided when analyzing data because the standard  
form of equation, and its independence from the 
particular values of the mean and standard deviation  
of the data, means that standard Gaussian tables that 
tabulate G(z) for various values of z can be used. 

Standard Gaussian tables 
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 A standard Gaussian table tabulates F(z) for various 
values of z, is given by: 
 
 
 
 
 
 

 Thus, G(z) gives the proportion of data values that are 
less than or equal to z.  

 This proportion is the area under the curve of F(z) against 
z that is to the left of z. 

Standard Gaussian tables 
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 To evaluate the probability that the error lies in 
a band between error levels D1 and D2, the 
expression has to be evaluated as  

  
 
 where  
 
 
 The table shows that G(z) = 0.5 for z = 0. This 

confirms that, as expected, the number of data 
values ≤ 0 is 50% of the total.  

 This must be so if the data only has random 
errors. It will also be observed that Gaussian 
tables only gives G(z) for positive values of z.  

 For negative values of z, we can make use of the 
following relationship: 

Standard Gaussian tables 

)(1)( zGzG 

)()()( 1221 zGzGzzzP 

 /,/ 2211 DzDz      

 The example above shows that, for Gaussian-distributed 
data values, 68% of the measurements have deviations 
that lie within the bounds of ±σ.  

 Similar analysis shows that that boundaries of ±2σ 
contain 95.4% of data points, and extending the 
boundaries to ±3σ encompasses 99.7% of data points. 

  The probability of any data point lying outside particular 
deviation boundaries can therefore be expressed by the 
following table. 

Example 5.  Solution 
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An integrated circuit chip contains 105 transistors. 
The transistors have a mean current gain of 20 and a 
standard deviation of 2.  

Calculate the number of transistors with a current 
gain between 19.8 and 20.2 

Example 8 

 An integrated circuit chip contains 10^5 transistors. The transistors 
have a mean current gain of 20 and a standard deviation of 2. 
Calculate the number of transistors with a current gain between 19.8 
and 20.2 
 
 
 
 
 
 
 
 

 
 

 Thus 0.0796 x 105 = 7960 transistors have a current 
gain in the range from 19.8 to 20.2. 

Example 8.  Solution 
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 The foregoing analysis has examined the way in which 
measurements with random errors are distributed about 
the mean value.  

 However, we have already observed that some error 
remains between the mean value of a set of measurements 
and the true value, i.e. averaging a number of 
measurements will only yield the true value if the number 
of measurements is infinite. 

Standard error of the mean 

 If several subsets are taken from an infinite data population, 
then, by the central limit theorem, the means of the subsets 
will be distributed about the mean of the infinite data set. 
The error between the mean of a finite data set and the 
true measurement value (mean of the infinite data set) is 
defined as the standard error of the mean, α, This is 
calculated as: 
 

 
 

 The value of α approaches zero if the number of 
measurements in the data set expands towards infinity, or if 
σ approaches 0 . The measurement value obtained from a set 
of n measurements, x1, x2, …, xn. measurement can then be 
expressed as: 
 

 

Standard error of the mean 

n/ 

 meanxx
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 A set of length measurements consisting of 23 data points 
has a mean length value xmean = 406.5 with a standard 
deviation σ = 1.88.  Assuming normal distribution of data, 
express the value of the length as  
 

 
  
 with a confidence limit of 68% (± σ boundaries) 

Example 6 

exx mean 

 A set of length measurements consisting of 23 data points has a mean length value 
xmean = 406.5 with a standard deviation σ = 1.88.  Assuming normal distribution of 
data, express the value of the length as  
 

 
  
 with a confidence limit of 
 

 a) 68% (± σ boundaries)  b) 95.4% (± 2σ boundaries) 

Example 6.  Solution 
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 In many situations where measurements are subject to 
random errors, it is not practical to take repeated 
measurements and find the average value.  

 Also, the averaging process becomes invalid if the 
measured quantity does not remain at a constant value, as 
is usually the case when process variables are being 
measured.   

 Thus, if only one measurement can be made, some means 
of estimating the likely magnitude of error in it is required. 

 The normal approach to this is to calculate the error within 
95% confidence limits, i.e. to calculate the value of the 
deviation D such that 95% of the area under the probability 
curve lies within limits of ±D.  

 These limits correspond to a deviation of ±1.96σ. 

Estimation of random error in a single 
measurement 

 Thus, it is necessary to maintain the measured quantity at a 
constant value whilst a number of measurements are taken in 
order to create a reference measurement set from which σ can be 
calculated.  

 Subsequently, the maximum likely deviation in a single 
measurement can be expressed as: Deviation D = ±1.96σ. 
 

 However, this only expresses the maximum likely deviation of the 
measurement from the calculated mean of the reference 
measurement set, which is not the true value as observed earlier.  

 Thus the calculated value for the standard error of the mean has 
to be added to the likely maximum deviation value.  

 Thus, the maximum likely error in a single measurement can be 
expressed as:   Error = ±(1.96σ + α) 

Estimation of random error in a single 
measurement 
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 Suppose that a standard mass is measured 30 times with 
the same instrument to create a reference data set, and the 
calculated values of σ is σ = 0.43.   

 If the instrument is then used to measure an unknown 
mass and the reading is 105.6 kg, express the mass value be 
with 95% confidence limits. 

Example 7 

 

 
  92.030/43.043.096.1

/96.1

96.1







Error

nError

Error





Mass = 105.6 ± 0.92 kg 

 Many aspects of manufacturing processes are subject to 
random variations caused by factors that are similar to 
those that cause random errors in measurements.  

 In most cases, these random variations in manufacturing, 
which are known as tolerances, fit a Gaussian distribution, 
and the previous analysis of random measurement errors 
can be applied to analyse the distribution of these 
variations in manufacturing parameters. 
   

Distribution of manufacturing tolerances 
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 Errors in measurement systems often arise from two or 
more different sources, and these must be aggregated in 
the correct way in order to obtain a prediction of the total 
likely error in output readings from the measurement 
system. 
 

 Two different forms of aggregation are required.  
 Firstly, a single measurement component may have both 

systematic and random errors and,  
 secondly, a measurement system may consist of several 

measurement components that each have separate 
errors. 

Aggregation of measurement system errors 

 If a measurement is affected by both systematic and random 
errors that are quantified as ±x (systematic errors) and ±y (random 
errors), some means of expressing the combined effect of both 
types of error is needed. 

 One way of expressing the combined error would be to sum the 
two separate components of error, i.e. to say that the total 
possible error is e = ± (x+y). However, a more usual course of 
action is to express the likely maximum error as follows: 
 
 

 It can be shown that this is the best expression for the error 
statistically, since it takes account of the reasonable assumption 
that the systematic and random errors are independent and so are 
unlikely to both be at their maximum or minimum value at the 
same time. 

Combined effect of systematic and random 
errors 

22 yxe 



BZU-ECE 

 ENEE4304 Instrumentation & Measurement 

 

3/1/2016 

2nd  Semester    2015-2016 

Instructor: Nasser Ismail 

 39 

 A measurement system often consists of several separate 
components, each of which is subject to errors. Therefore, 
what remains to be investigated is how the errors associated 
with each measurement system component combine 
together, so that a total error calculation can be made for the 
complete measurement system.  
 

 All four mathematical operations of addition, subtraction, 
multiplication and division may be performed on 
measurements derived from different 
instruments/transducers in a measurement system. 
Appropriate techniques for the various situations that arise 
are covered below. 

Aggregation of errors from separate 
measurement system components 

 If the two outputs y and z of separate measurement system 
components are to be added together, we can write the sum 
as S = y + z.  

 If the maximum errors in y and z are ± ay and ± bz 
respectively, one way to express the maximum and minimum 
possible values of S as: 
 

 
 
 

Error in a sum 
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 This relationship for S is not convenient because in this form 
the error term cannot be expressed as a fraction or 
percentage of the calculated value for S. Fortunately, 
statistical analysis can be applied that expresses S in an 
alternative form such that the most probable maximum error 
in S is represented by a quantity e, where e is calculated in 
terms of the absolute errors as: 
 
 

 Thus.                              This can be expressed in the alternative 
form 

Error in a sum 

 A circuit requirement for a resistance of 550 Ω is 
satisfied by connecting together two resistors of 
nominal values 220 Ω and 330 Ω in series.  

 If each resistor has a tolerance of ±2%, calculate the 
tolerance of the resulting resistance. 
 
 

 
 

 

Example 9 
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 A circuit requirement for a resistance of 550 Ω is satisfied by 
connecting together two resistors of nominal values 220 Ω 
and 330 Ω in series. If each resistor has a tolerance of ±2%, 
calculate the tolerance of the resulting resistance. 
 
 

 
 
 

 Thus the total resistance S can be expressed as: 
 

 
 

Example 9. Solution 

0144.0550/93.7 f

    93.733002.022002.0
22
e

 If the two outputs y and z of separate measurement systems are 
to be subtracted from one another, and the possible errors are 
±ay and ±bz, then the difference S can be expressed (using 
statistical analysis as for calculating the error in a sum and 
assuming that the measurements are uncorrelated) as: 
 
 

 where e and f are calculated as 
 

Error in a difference 
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A fluid flow rate is calculated from the difference in 
pressure measured on both sides of an orifice plate. 

  If the pressure measurements are 10.0 bar and 9.5 
bar and the error in the pressure measuring 
instruments is specified as ±0.1%, calculate the 
tolerance of the resulting flow rate measurement. 
 
 

 
 

 

Example 10 

 A fluid flow rate is calculated from the difference in pressure 
measured on both sides of an orifice plate. If the pressure 
measurements are 10.0 bar and 9.5 bar and the error in the 
pressure measuring instruments is specified as ±0.1%, calculate 
the tolerance of the resulting flow rate measurement. 
 
 

  
 The resulting flow rate has an error tolerance of 2.76 % 
 
 This example illustrates the relatively large error that can arise 

when calculations are made based on the difference between 
two measurements. 

 
 

Example 10 
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 If the outputs y and z of two measurement system components 
are multiplied together, the product can be written as P = yz. If 
the possible error in y is ± ay and in z is bz, then the maximum 
and minimum values possible in P can be written as: 
 
 
 
 
 

 For typical measurement system components with output errors 
of up to one or two per cent in magnitude, both a and b are very 
much less than one in magnitude and thus terms in aybz are 
negligible compared with other terms.  

 Therefore, we have Pmax = yz(1 + a + b); Pmin = yz(1 - a – b). 
Thus the maximum error in the product P is ±(a+b).  

Error in a product 

 Whilst this expresses the maximum possible error in P, it tends to 
overestimate the likely maximum error since it is very unlikely 
that the errors in y and z will both be at the maximum or 
minimum value at the same time. A statistically better estimate 
of the likely maximum error e in the product P, provided that the 
measurements are uncorrelated, is given by: 
 
 
 
 

 Note that in the case of multiplicative errors, e is calculated in 
terms of the fractional errors in y and z (as opposed to the 
absolute error values used in calculating additive errors). 
 

 

Error in a product 
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 If the power in a circuit is calculated from 
measurements of voltage and current in which the 
calculated maximum errors are respectively ±1% 
and ±2%, what is the maximum likely error in the 
calculated power value? 

 
 

 

Example 11 

 If the power in a circuit is calculated from measurements of 
voltage and current in which the calculated maximum errors are 
respectively ±1% and ±2%, what is the maximum likely error in 
the calculated power value? 

 
 

 

Example 11.  Solution 

%2.2

022.0

02.001.0 22

22









e

e

e
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 If the output measurement y of one system component with 
possible error šay is divided by the output measurement z of 
another system component with possible error ±bz, then the 
maximum and minimum possible values for the quotient can be 
written as: 
 
 

 
 
 
 For a << 1 and b << 1, terms in ab and b2 are negligible compared 

with the other terms. Hence: 

Error in a quotient 

 Thus the maximum error in the quotient is ±(a + b). 
However, using the same argument as made above for the 
product of measurements, a statistically better estimate of 
the likely maximum error in the quotient Q, provided that 
the measurements are uncorrelated, is that given as: 
 

 
 

Error in a quotient 
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 If the density of a substance is calculated from 
measurements of its mass and volume where the respective 
errors are ±2% and ± 3%, what is the maximum likely error in 
the density value? 

 
 

Example 12.  Solution 

%6.3

036.0

03.002.0 22

22









e

e

e

bae

 The final case to be covered is where the final measurement is 
calculated from several measurements that are combined 
together in a way that involves more than one type of arithmetic 
operation. 

 For example, the density of a rectangular-sided solid block of 
material can be calculated from measurements of its mass divided 
by the product of measurements of its length, height and width.  

 The errors involved in each stage of arithmetic are cumulative, and 
so the total measurement error can be calculated by adding 
together the two error values associated with the two 
multiplication stages involved in calculating the volume and then 
calculating the error in the final arithmetic operation when the 
mass is divided by the volume. 

 
 

Total error when combining multiple 
measurements 
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 A rectangular-sided block has edges of lengths a, b and c, and its 
mass is m. If the values and possible errors in quantities a, b, c 
and m are as shown below, calculate the value of density and the 
possible error in this value. 

 
 a = 100mm ± 1%, b = 200mm ± 1%, c = 300mm ± 1%, m = 20 kg ± 

0.5%. 
 
 Value of ab = 0.02 m2 ± 2% (possible error = 1% + 1% = 2%) 
 Value of (ab)c = 0.006 m3 ± 3% (possible error = 2% + 1% = 3%) 
 Value of m/(abc) = 20/0.006 = 3330 kg/ m3 ± 3.5%  
   (possible error = 3% + 0.5% = 3.5%) 
 
 Compare with 
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